

OXFORD CAMBRIDGE AND RSA EXAMINATIONS

Advanced Subsidiary General Certificate of Education Advanced General Certificate of Education

MATHEMATICS

4727

Further Pure Mathematics 3

Wednesday

25 JANUARY 2006

Morning

1 hour 30 minutes

Additional materials: 8 page answer booklet Graph paper List of Formulae (MF1)

TIME

1 hour 30 minutes

INSTRUCTIONS TO CANDIDATES

- Write your name, centre number and candidate number in the spaces provided on the answer booklet.
- Answer all the questions.
- Give non-exact numerical answers correct to 3 significant figures unless a different degree of accuracy is specified in the question or is clearly appropriate.
- You are permitted to use a graphical calculator in this paper.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- The total number of marks for this paper is 72.
- Questions carrying smaller numbers of marks are printed earlier in the paper, and questions carrying larger numbers of marks later in the paper.
- You are reminded of the need for clear presentation in your answers.

1 Find the acute angle between the skew lines

$$\frac{x+3}{1} = \frac{y-2}{1} = \frac{z-4}{-1}$$
 and $\frac{x-5}{2} = \frac{y-1}{-3} = \frac{z+3}{1}$. [4]

2 The tables shown below are the operation tables for two isomorphic groups G and H.

	a					H	2	4	6	8
a	d	a	b	c	•	2	4	8	2	6
b	a	b	c	d			8			
c	b	c	d	a			2			
d	c	d	a	b			6			

- (i) For each group, state the identity element and list the elements of any proper subgroups. [4]
- (ii) Establish the isomorphism between G and H by showing which elements correspond. [3]
- 3 (i) By using the substitution $y^3 = z$, find the general solution of the differential equation

$$3y^2 \frac{dy}{dx} + 2xy^3 = e^{-x^2},$$

giving y in terms of x in your answer.

- (ii) Describe the behaviour of y as $x \to \infty$. [1]
- 4 (i) By expressing $\cos \theta$ and $\sin \theta$ in terms of $e^{i\theta}$ and $e^{-i\theta}$, or otherwise, show that

$$\cos^2\theta\sin^4\theta = \frac{1}{32}(\cos 6\theta - 2\cos 4\theta - \cos 2\theta + 2).$$
 [6]

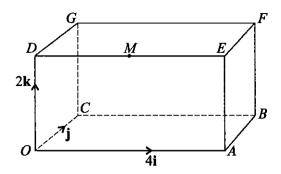
(ii) Hence find the exact value of

$$\int_0^{\frac{1}{3}\pi} \cos^2 \theta \sin^4 \theta \, \mathrm{d}\theta. \tag{3}$$

[6]

- 5 (i) Solve the equation $z^4 = 64(\cos \pi + i \sin \pi)$, giving your answers in polar form. [2]
 - (ii) By writing your answers to part (i) in the form x + iy, find the four linear factors of $z^4 + 64$. [4]
 - (iii) Hence, or otherwise, express $z^4 + 64$ as the product of two real quadratic factors. [3]

6



The cuboid $\overrightarrow{OABCDEFG}$ shown in the diagram has $\overrightarrow{OA} = 4\mathbf{i}$, $\overrightarrow{OC} = \mathbf{j}$, $\overrightarrow{OD} = 2\mathbf{k}$, and M is the mid-point of DE.

- (i) Find a vector perpendicular to \overrightarrow{MB} and \overrightarrow{OF} .
- (ii) Find the cartesian equations of the planes CMG and OEG. [5]
- (iii) Find an equation of the line of intersection of the planes CMG and OEG, giving your answer in the form $\mathbf{r} = \mathbf{a} + t\mathbf{b}$.
- A group G has an element a with order n, so that $a^n = e$, where e is the identity. It is given that x is any element of G distinct from a and e.
 - (i) Prove that the order of $x^{-1}ax$ is n, making it clear which group property is used at each stage of your proof. [6]
 - (ii) Express the inverse of $x^{-1}ax$ in terms of some or all of x, x^{-1} , a and a^{-1} , showing sufficient working to justify your answer. [3]
 - (iii) It is now given that a commutes with every element of G. Prove that a^{-1} also commutes with every element. [2]
- 8 (i) Find the general solution of the differential equation

$$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} + 2k\frac{\mathrm{d}x}{\mathrm{d}t} + 4x = 0,$$

where k is a real constant, in each of the following cases.

- (a) |k| > 2
- **(b)** |k| < 2
- (c) k = 2

[8]

- (ii) (a) In the case when k = 1, find the solution for which x = 0 and $\frac{dx}{dt} = 6$ when t = 0. [4]
 - (b) Describe what happens to x as $t \to \infty$ in this case, justifying your answer. [2]